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ABSTRACT 

Formulas for the pseudoinverse of a compact operator 

are applied to linear system identification and scattering 

function estimation from a finite set of noisy measurements. 

The result is a nonparametric estimator possessing several de- 

sirable features.  The approach encompasses the Modified Dis- 

crete Fourier Transform and is applied herein to the important 

problem of closely spaced object resolsution in radar/optical 

signal processing. 
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I.        INTRODUCTION 

Extracting information from noisy measurements is a 

classical problem. Yet, it is this very type of problem which 

forms a long string of applications challenging engineers and 

scientists of the past, the present, and likely a long term 

future.  One problem area involves situations wherein an 

unknown function (signal) is observed after obscuration by a 

system characterized by a known impulse response and additive 

random distrubances.  With the ever popular digital computing 

machine, the measurements are recorded digitally.  One 

therefore faces the problem of recovering an unknown continous 

function from a finite set of discrete measurements. 

Motivated by problems in radar/optics scattering 

function estimation and signal processing, we study a solution 

to the above problem in this paper.  Let s(t) denote the 

transmitted signal of a radar (or communication) system.  This 

signal is scattered by a target (or channel) represented by a 

linear system with impulse response x(t) which we shall call 

the "scattering function".  The waveform at the front end of 

the receiver is the convolution of x(t) and s(t).  Let the 

receiver be a conventional matched filter with impulse response 

matched to the transmitted signal, the receiver output being 

therefore a double convolution denoted as s(t)*(s(t)*x(t)).  We 
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further assume that the received data is recorded in sampled 

form.  Given the sample data set, y(ti), i=1,...,n, we would 

like to estimate the target configuration (or channel property) 

represented by the scattering function x(t).  In the context of 

linear system identification, the above problem is the same as 

the problem of estimating the impulse response (or input 

signal) of a linear system given the input signal (or system 

impulse response) and the discrete samples of the output of the 

linear system. 

Typical approaches to problems of this kind fall into 

two distinct categories.  The first one is to treat it as a 

deconvolution problem.  In this case the convolution integral 

is approximated with a convolution summation, and the 

deconvolution procedure is carried out either via the discrete 

Fourier transform or directly in the time domain, as in [2]. 

The second approach is to utilize a parametric model of the 

unknown signal x(t) and attempt to estimate parameter values 

embedded in the x(t) model.  One example in the radar/optics 

area is the resolution of closely spaced objects.  In this 

case a maximum likelihood estimator is used to estimate target 

amplitudes and locations for an assumed number of targets 

contained in the observation.  In the latter part of this 

report we will use the closely spaced object resolution problem 

an an example of comparison between our approach and the 

:>. !-.'"-/l-.'-.'.- ^.-V.-••'-•-•>\ •'.'•'I.-'-•'.•-.'. •'.••'>••".••'.••.'.•-!.'-V^'-.V-I."•-.••!• •-.'-'• 
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parametric estimator described above. 

The method to be described in this report is a 

nonparametric estimator.  It is derived using the 

pseudoinversion concept of operator theory.  Our method is 

similar to the deconvolution method in that both utilize a 

nonparametric approach and both are solving an integral 

equation.  Our approach does not, however, require the 

approximation of convolution integral by a summation and 

furthermore, the estimator is a continuous time function even 

though the data is given in sampled form.  Our estimator 

therefore possesses the combined features of deconvolution and 

interpolation. 

We summarize features of our approach below.  The 

process of the radar/communicaton problem described above can 

be viewed as a composite linear transformation between a time 

function x(t) of a Hubert space H and sampled data y(ti), 

i=1,...,n, of a n-dimensional Euclidean space En.  This 

composite operator consists of convolution integral operators 

with kernels s(t) and the sine function.  Let Q:  H+En denote 

this operator, then one can write, 

y = Qx (1.1) 

where x(t)eH and yeR(Q)CEn, the sampled data array.  Notice 

that we use R(•) to denote the range space of the enclosed 

operator.  Letting Q+ denote the pseudoinverse of Q, our 
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estimate x(t) of x(t) is given by 

X = Q+Y_. (1.2) 

The estimate x possesses several desirable properties: 

(1) It has least norm among all elements of H whose 

Q-image agrees with y; hence x has an interpolating 

spline significance. 

(2) When a prior bound on i|xli is given, x minimizes the 

maximum error subject to this bound; hence x has a 

minimax significance. 

(3) More generally, if T:H+K is another operation into a 

Hubert space K, then T(x) is the best (minimax) 

estimate of T(x), given the data y and a prior bound 

on  Ixll.  (The case where T is the Fourier transform 

is of particular interest). 

In this report we will describe the theory leading to 

representations of the pseudoinverse Q+ and formulas for x. 

This operator theory is next applied in Chapter 3 to the 

problem described above.  Finally, three examples are 

considered in Chapter 4.  The first of these is simple 

pointwise interpolation from a finite set of sample values. 

The resulting formula is the time-domain version of the 

Modified Discrete Fourier Transform of [3].  The second example 

illustrates noise-free reconstruction of a truncated sinusoid. 

The last (and most serious) example concerns the problem of 

closely spaced object resolution, wherein the original signal x 

is modeled as an impulse train.  The performance of our method 

on noisy data is discussed and illustrated by several figures. 
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II. REVIEW OF RELEVANT OPERATOR THEORY 

Let Q: H •*• H be a compact linear operator on the 

Hilbert space Hi with range R(Q) in the Hubert space H2. 

With Q+ denoting the pseudoinverse of Q, our estimate x of 

the solution x to the equation 

y=Q(x) (2.1) 

is 

^= Q+(y) (2.2) 

In section  2.1 below we briefly review general properties of Q 

and Q+.  In section 2.2 we focus on the important special 

case where Q is of finite rank; this includes the situations 

where the data vector y consists of sampled values. 

2.1  Structure of Compact Operators and Their Pseudoin- 
verses 

We begin by recalling the basic structure of a 

compact self-adjoint (Q=Q*) operator. 

Theorem 2.1 . (Spectral Theorem)  Let Q be a compact self- 

adjoint operator acting on a Hilbert space H.  Then the 

non-zero spectrum of Q has the form {X , X ,...} where each X. 

is a real eigenvalue of finite multiplicity, and lim X.=0 if H 

is of infinite dimension.  There is a corresponding orthonormal 

sequence {e.} of eigenvectors such that 

^L,^,^/^.!:./. j.^.•:.« ^.. •.'._; «_•.. - • ..-_..; -.-. ,-..-..-, 
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Q(x) = £ e.. < x,e.. > ejf  x e H (2.3) 

Corollary 2.1.1  (Resolution of the Identity)  With Q as 

above, let P. be the orthogonal projection of H onto span {e.}. 

Then 

i)       ^P. • I     (strong convergence) 

Ü)      PjPk = P^j = «^ (2.4, 

iii)     2^ \.P. = Q   (norm convergence) 

This result shows that Q can be synthesized from real 

linear combinations of commuting orthogonal projections. 

Corollary 2.1.2  (Characterization of the Range)  With Q 

as above, a necessary and sufficient condition that y belong to 

R(Q) is 

i)       y -L N(Q), the nullspace of Q, and 

ii)      £ Xj2|<Y,eJ>|2 < " (2,5) 

If so, then all preimages of y have the form 

^ <y'V 
x - u + £  x. J  ej' (2*6> 

for any u * N(Q). 

Theorem 2.1 and its corollaries are standard; their 

proofs may be found, for example, in [1].  Equation (2.6) in 

effect specifies the complete (multivalued) inverse of Q. When 

•:- * :-:::&^^^^^ä^^vvj:-. . . ,±:^y-:±\ . .  __ :  
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we use 

<y,e.> 
x = E-X-Lej <2-7> 

as the estimate for x, we recover the component of x that is 

orthogonal to N(Q). 

These results are not generally of immediate 

applicability because of the self-adjointness requirement.  We 

can, however, use them to establish analogues of the expansions 

(2.3) and (2.6) for arbitrary compact operators. 

Theorem 2.2  (Singular Value Decomposition)  Let QrH+H- 

be a compact operator acting between the Hilbert spaces H1 and 

H_.  Then there are orthonormal bases {u } of N(Q)  and {v } of 

R(Q) such that 

0(x) = 53 o  <x,u > v ,   x e H (2.8) 
j  j     3   j        1 

Hence {a  , a  ,...} is the non-zero spectrum of QQ  (or, 

Q*Q). 

The positive numbers a-\, 02,... are termed the 

singular values of Q.  Theorem 2.2 generalizes the familiar 

matrix singular value decomposition 

A = VDU* (2.9) 

where A is arbitrary, U and V are unitary, and D is a non- 

negative diagonal matrix.  The decomposition (2.9) is easily 

S 
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seen to imply the polar decomposition 

A = UR (2.10) 

where ü is unitary and R is positive semidefinite.  Conversely 

(2.10) combined with the Spectral Theorem yields a simple proof 

of (2.9), and (2.8) may similarly be obtained from Theorem 2.1 

and the general polar decomposition for operators. 

Corollary 2.2.1  (Characterization of the Range)  With the 

notations of the preceding theorem, a necessary and sufficient 

condition that y e R(Q) is 

i)       y -L N(Q*), and 

ii)      £ aj"2|<y'Vj>|2 < " (2.11) 

Inequality ii) of the corollary is often called the Picard 

Condition.  Vectors y obeying it constitute the domain D(Q+) 

of the pseudoinverse Q+ of Q: 

D(Q+) = R(Q) + N(Q*) 

= {y e H2: min I I Q(x)-y| I exists in H-|}. 

Any x minimizing I|Q(X) - yl  is called an extremal solution of 

equation (2.1).  There is a unique extremal solution of least 

norm; this is the vector 

x - Q+(y) = £ —a ui (2*12) 
j    J 

This last formula defines the pseudoinverse operator Q+ on 
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its domain D(Q+).  We see that, unless R(Q) is a closed 

subspace of H2 (which, for compact Q, happens iff Q is of 

finite rank), Q+ is defined only on a dense linear subspace 

of H2 and is an unbounded operator.  In this case equation 

(2.1) is ill-posed even if Q is one-to-one and there will be an 

inherent ill condition in any inversion attempt. 

Although of limited paractical value because of the 

difficulty in knowing all the singular values Oj , formula 

(2.12) is extremely important theoretically as a device for 

analyzing the pseudoinverse solution.  First of all, it 

demonstrates the precise source of ill conditioning by showing 

that any perturbation of y in the VJ direction is magnified 

by the factor oT  , which can be arbitrarily large.  Secondly, 

the convergence of numerous iterative and regularization 

schemes for equation (2.1) can be viewed as particular cases 

of a "filtered" pseudoinversion wherein the factors o.~  in 

(2.12) are replaced by new factors <|>(o.).  Here the non-nega- 

tive function <f(t) vanishes at 0 and behaves asymptotically as 

t  for t * +°°.  In particular when <t> vanishes on an interval 

[0, 5] we have a "truncated" pseudoinversion. 

2.2 Operators of Finite Rank and Their Pseudoinverses 

When measurements of a signal occur discretely (the 
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sampled data case) our observation operator Q has range in E 

and hence is of finite rank.  There is, of course, in general a 

fundamental dichotomy for compact operators according as they 

have closed range (and hence finite rank) or not.  We recall in 

the following proposition standard properties of the pseudo- 

inverse of any operator with closed range. 

Proposition 2.1  Let Q: H1 "*"H2 be a bounded linear operator 

with range closed in H?, and let Q be its pseudoinverse.  Then 

a) Q+: H2 * R]   is bounded 

b) (Q+)+ = Q 

c) Q+QQ+ = Q+ 

d) QQ+Q = Q 

e) QQ+ = orthogonal projection on R(Q) 

f) I-Q+Q - orthogonal projection on N(Q) 

It follows from part f) that Q+Q is the orthogonal 

projection of H1 on N(Q)  and hence that Q maps R(Q) (indeed, 
1 

all of H2) onto N(Q) .  With reference to equation (2.1) we may 

say, when R(Q) • H2 (as may be assumed when Q is of finite 

rank), that Q recovers the component of x in N(Q) , although, 

strictly speaking, Q+ does not "know" about x.  Equivalently, 

Q+(y) is the element cf least norm in the variety {xeH-j: 

Q(x)=y} and, as such, has an interpolating spline significance. 

10 
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so 

That is, if "smoothness" of elements of H^ can be thought of 

as varying inversely with the size of the norm on Hi, then 

Q+(y) is the smoothest interpolant in Hi of the data y. 

This remark is particulary pertinent when H^ is a reproducing 

kernel or functional Hilbert space. 

Another interpretation of the estimate x = Q+(y) is 

possible when a prior bound on  |x|j is given in addition to 

equation (2.1).  Then it is not hard to see that x minimizes 

the maximum error (as measured by the norm on Hi) subject to 

this bound.  Precisely, x is the center of the "hypercircle" in 

H-j defined by the data and the prior bound.  Thus x has a 

minimax significance. 

The next result leads to the fundamental formula for 

Q+ in the finite rank case.  With it we can bypass formula 

(2.12) and reduce to a matrix inversion. 

Theorem 2.3 a) Let Q:H-|->-H2 be any bounded operator 

with closed range.  Then a) 

Q+ = Q*(QQ*)+ (2.13) 

b) If R(Q) = H2 then QQ* is invertible and so 

Q+ = Q*(QQ*)"1. (2.14) 

11 

-* -— - .•-•-•. -----•-•-•---•••-•.••• .'•. , .'•.•. ^ . . . ... - 



•;»*.« ,i -.« •> *;J \J mi »f * *,b •_- \. *_. *.v*v w : \i \» *yy '.'V- "-• *.*' *.' "*•"'• ''*•"''• * ."• •• » . ".'»'. *'. » »' .•» *."» i.* ."* . •' 

Part a) of the Theorem can be proved by first noting 

that N(QQ*) • N(Q ) and hence that R(QQ ) = R(Q), since R(Q) is 

closed.  Next both sides of (2.13) are seen to annull N(Q*) = 

R(Q) •  Finally, using the invertibility of Q on N(Q)-*- one 

shows that the right side of (2.13) agrees with this inverse on 

R(Q).  Part b) is immediate. 

It remains to identify the operators appearing on the 

right side of (2.14) when Q has finite rank.  In this case we 

may assume that R(Q) = En where n = rank(Q).  If {e-,...fe } 

is the standard unit vector basis in En, there exists elements 

{q,,...,q } (not necessarily orthonormal) in H.. such that 

n 
Q(x) =  22 <x,q.>e.,   x e H, (2.15) 

j = 1    D J 

Note that (2.15) is not generally the singular value 

decomposition of (2.8), but rather is chosen for convenience in 

problem formulation.  If, in fact, the expansion (2.8) is known 

then, as we have seen, Q+ is directly given by (2.12). 

Proposition 2.2 With Q given in the form (2.15) we have 

*      n 

j-1     J 3 

and the matrix of 

12 
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QQ • [<qj»qi>]» (2.16) 

relative to the basis {ej,...en}. 

It follows that for y = (yi,...,yn)
T e En, 

Q+(y) = E xi q-i' <2-17> 

with 

[<q±$  q^l » • l. (2.18) 

The matrix appearing in (2.16) and (2.18) is the transposed 

Gram matrix of the vectors {q.,...,q } and is exactly the Gram 

matrix when the underlying scalars are real.  As such, this 

matrix is positive definite, although possibly ill-conditioned, 

the latter depending on the relative lengths and alignments of 

the vectors qj in H-j. 

When ill-conditioning is present and there is noise 

in the data vector y, recourse may be had to a regularization 

of the pseudoinverse.  In this case the coefficients Xj in 

£ £ 
(2.17) are replaced by X where e>0 and X satisfies 

(QQ* + e I)Xe = y. (2.19) 

The corresponding solution in Hi then has a smoothing spline 

interpretation; it varies in N(Q)-'- between Q+(y) (for e+0) 
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and the zero vector (for £-*•<»).  This procedure is equivalent to n 

a particular choice of the filtering functions <t» that were 

introduced at the end of section 2.1 in the context of pseuo- 

inversion via singular value decomposition.  Namely, 

4>(x) = -4—. 
xz+e 

Some examples of the use of such regularized pseudoinversions 

are given in section 4.3 below. 
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III. THE PROBLEM OF LINEAR SYSTEM IDENTIFICATION/SCATTER- : 

ING FUNCTION ESTIMATION 

1 We i low apply the results of Section 2 to the problem 
* 
• 

of linear system identification.  We will still use the 

scattering function estimation problem as a guideline in 

formulating the composite operator.  The linear system 

identification problem is clearly contained in this problem 

area. 

3.1  The Composite Operator 

As discussed before, the output of a radar receiver 

can be written in terms of a double integral, 

y(t) = /dt^ft-T^ 11 Sft-T,) / dT0s(T1-T2)x(T2) (3.1) 

where x(») is the scattering function to be estimated and s(») 
* 

is the transmitted signal .  The output y(t) is then sampled to 

obtain the discrete data y(t-), i=1...,n.  We can represent the 

sampling process using a reproducing kernel (RK) K(t,x) where 

K(t,T) = sinc(fl(t-T)) 

sin(fl(t-x)) 
TT(t-T) (3.2) 

*For the purpose of simplicity, we avoid the representation of 
radar signals using complex functions. 
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The bandwidth, ß, is dictated by the bandwidth of y(t) (not 

x(t)).  Notice that K(t,x) is a RK because sine (•) is a 

function of positive type (its Fourier transform is 

nonnegative); hence 

y(t) = <K(t, •),   y(»)> (3.3) 

whenever y is a-bandlimited.  In particular, 

yi = y(ti) = JK(ti,x)yCc)äT. (3.4) 

Assuming that s(t) is symmetric about its mean and letting 

P(t) denote the autocorrelation function of s(t), one then has 

•/• 
P(t) = #S(t-T)s( T) dT 

Combining Eqs. (3.2), (3.4), and (3.5), one obtains 

(3.5) 

yi =/P(ti-
T)x(T)d (3.6) 

for i=1,...,n. 

Applying equation (2.15) to (3.6), one obtains 

Q = 

<  , P^ 

<  • V 

(3.7) 

where P.aP(t.-t) and the inner product is specified by (3.6) 

It is now clear that Q is a mapping from L  to E . 
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I 

Given y^, i=1,...,n, to find x(t) is a problem of mapping 

from En to L .  Equation (3.6) also clearly indicates that this 

is the same problem as the linear system (or input) 

identification (or estimation) problem. 

3.2 The Adjoint Operator 

Using proposition 2.2, one obtains 

*      n 

Q (y) = £ y.Pi (3.8) 
i = 1  x l 

or 

Q* = [P1,...,PnJ (3.9) 

Notice that the right side of equation (3.7) is a column vector 

where each component is a functional represented by an inner 

product.  The adjoint Q* maps, however, from sampled data 

space E back to a space L of functions of continuous time, 

Equations (3.8) and (3.9) clearly reflect this fact since p^ 

is a function of continuous time. 

3.3 The Pseudoinverse Operator 

Applying the above results to Eq. (2.14), the pseudo- 

inverse operator readily follows: 

+   *  * -1 
Q = Q (QQ ) 

= [»,*•••*»„] KP^y]"' (3.10) 
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where <p.,p. > is the (i,j)th component of the n by n matrix of 

(QQ*) and 

<pi' pj> =/p<ti-T>p(tj-T)d (3.11) 

In the problem of radar scattering function estimation, p(t) is 

the autocorrelation function of the transmitted signal, and is 

therefore symmetric about t=0.  In the context of linear system 

identification and input estimation, P(t) is either the system 

inpulse response or the input signal used to probe the unknown 

system, and is usually a nonsymmetric function of time.  In any 

* -1 event, the matrix of (QQ )   can be pre-computed and its 

function is simply to weight the data vector y^.  Let a denote 

the weighted data vector, i.e., 

a = (QQ*)~1y_ ; 

then the final estimate of x takes the form 

£( *) - Q+Z 

n 

(3.12) 

£ P(ti-r)ai 
i = 1   x * 

(3.13) 

Notice again that the estimate X(T) is a function of continuous 

time T. 

The conventional approach to the problem of decon- 
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volution is to first approximate the convolution integral with 

a summation.  In our problem, although the data is recorded in 

discrete form, the estimate can be evaluated at any instant of 

time.  Our method includes therefore both deconvolution and 

interpolation.  We will apply the interpolation significance of 

our approach to present an interpolation formula for finite 

number of samples in the example section. 

3.4 Discussion of Numerical Problems 

Since the computation of Q+ involves a matrix 

inversion, numerical problems may become an issue.  This can be 

made clear by examining Eq. (2.12).  When the condition number 

(= the ratio of the largest to the smallest eigenvalue) of 

QQ* approaches the dynamic range of the digital computer used 

for implementation, its inverse can no longer be represented 

exactly.  In addition, even before the condition number 

approaches the range of a computer, a slight disturbance in y 

(e.g., measurement noise) will be amplified by the small 

eigenvalues (see Eq. (2.12)). Methods for reducing such effects 

are therefore of practical importance. 

Among these methods are the truncated and regularized 

pseudoinverse already mentioned in Section 2, where it was also 

noted that both methods are special cases of a filtered 

pseudoinversion obtained by replacing a~     in (2.12) by <|>(a.). 
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Each of these methods involves a trade-off between fidelity to 

the data and noise suppression.  As we insist on greater 

fidelity we amplify the noise transmitted to the solution, and 

conversely.  The final choice of trade-off may be made either 

on the basis of prior knowleldge of noise statistics or 

interactively. 

For example, the truncated singular value estimate m    ); 
A 

x5 is obtained from (2.12) by deleting those terms in the sum 

for which a. < 6;  thus 

_ <y,v.> 
x6 =  £ __J-u (3.14) 

aj>6   3 

This is equivalent to the ordinary singular value pseudoinverse 

applied to the projection of the data onto span {v.:  o. >^ 6}. 

A key point here is that the method is independent of the data 

y, depending only on the singular system of the operator Q. 

Hence if the noise has large components along the remaining o. 

directions in (3.14), there is unavoidable trouble.  When it — — — — -—— — — -.—  _-_  v _ . . - / ,   "-»«  — —.  _.__,— — ____vv  ________    .........  __ 
1 

can be assumed that y includes an additive white noise • , - 

2 
perturbation with known variance s , then a common approach is 

•1 
A 

to chose the largest 6 that makes the residual j1Q{x6)—y1  < 
It 

[rank (Q)]1/2 • s. 
A 

The regularized estimates x£ were defined through . • 

j 

1 
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Eqs. (2.17) and (2.19): 

*e =  £   x
n

e <M- <3-15> 

It was noted that while xe could be viewed in terms of 

filtering the singular value expression (2.12) for Q+(y), for 

computational purposes this expansion is not required to be 

known. 

The estimate xe can alternatively be viewed as the 

minimizer of the function 

||Q(x) - y||2 + e||x||2. (3.16) 

In particular, when the measurement vector is corrupted with 

additive noise with covariance R, a weighted minimum norm 

solution is sought, i.e., 

||Q(x) - y||2R-1 + e||x||2 (3.17) 

This results in the following expression for X , 

L(L"
1
QQ*L"

T
 + el)LTXe = y (3.18) 

T where LL  A R, as opposed to (2.19).  In this case, (3.15) and 

(3.18) give the regularized estimate xe. 

Regularization is closely related to the "ridge 

regression" method of statistics, except that the rank 

assumptions on the observation operator Q are somewhat 
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different in that context.  Intuitively, one replaces an 

initial ill-conditioned inversion problem Q{x)=y by a 

neighboring well-conditioned problem Qe(x) = y, solves this for 

+ 
x and then verfies lim x  = Q (y) as e + 0.  As such, regulari- 

zation is one type of representation of the pseudoinverse 

Q+. This latter topic has been extensively studied for 

general bounded operators [4]. 

A good discussion of the relative merits of truncated 

and regularized pseudoinversion, particularly with respect to 

the noise level in the data is given in [5]. 

In the next section, three examples will be 

presented.  The last example deals with the closely spaced 

object resolution problem where noisy measurements will be 

used.  Numerical problems mentioned above will be further 

examined, and the results of applying the regularization method 

will be studied.  The criterion for choosing the value of the 

regularization coefficient is in terms of a desired false alarm 

probability. 
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IV. EXAMPLES 

Three examples are presented in this section.  In the 

first example, we apply the theory of Section 3 to derive an 

interpolation formula for finite number of samples, i.e., given 

A 

z(t-), i=1,...,n, find z(t) for t e (-a,b) where a and b can be 

arbitrarily large.  In the second example, we use a truncated 

sine function as the scattering function and demonstrate the 

reconstructed function.  The third example deals with the 

problem of resolving closely spaced targets (signals). 

4.1  A Formula for Interpolation With Finite Number of 
Samples 

Let z(t) be a bandlimited function defined as 

z(t) e BL(fl) 

= fz(t)eL2(-«,-):  Z(w)»0 (a.e.) for Iwl>«}    (4.1) 

where Z(w) is the Fourier transform of z(t). 

From Eq. (3.3) the sampling operation is represented 

by the reproducing kernel K(t,t) given in (3.2), that is, 

K(t,T) - | sinc(Ji(t-T)), (4.2) 

and the samples of z(t) are obtained as 
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2(t.) = /K(t.,T)z(T)dT. (4.3) 

From (3.10) we have the estimate 

Z(T) = Q*(QQ*)"1z (4.4) 

where    z= [z(t1 ),...,z(tn)] 

Q  = [K(t1fT),...,K(tn,T)] 

QQ* = [<K(tifT)f K(tj,x)>] 

• [K(tiftj)]. 

Suppose that the samples are spaced using the 

'Nyquist" rate, i.e., 

then 

t.+1-t. = JJ = a constant, 

<K(t.,T), K(tj,x)> = | 6.jr (4.5) 

where 6jj is the Kronecker delta function.  We therefore have 

QQ* a diagonal matrix, or 

n 
•;                      Z(T) = £ z(t.) sinc(0(t.-T))            (4.6) 
^:                             i*1    *         l 

A 
4                                             If the samples are, however, taken other than (faster 

or slower) the Nyquist rate, QQ* is no longer a diagonal 
"i 

1 
jj 
1 
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* -1 
matrix.  Let r.. denote the (ifj)th entry of (QQ )   and 

a = (QQ*)~1z, then 

i   k=1  IK   K 

Hence, the interpolated z(t) is 

A 
:(T) - Z ai sin(0(t.-T)) 

i=1 

= Z    E '".,--> H >sin(fi(t; - 
m   k=1  ik   k        i 

Equations (4.6) and (4.8) give an interpolation formula for 

finite number of samples.  We make the following remarks: 

1) When sampled at Nyquist rate, the interpolation 

formula (eq. (4.6)) is the traditional sine function 

weighted with samples.  Each data sample appears only 

once. 

2) When sampled at other than the Nyquist rate, the 

samples are first summed with weightings determined 

by (QQ*)-1.  The sine function at a time instant 

carries several data samples. 

3) The above reconstruction formula (with or without 

Ü? noise corruption) is optimum in the minimax sense 1 
•- 

y. (see section 2). 

1 1 1 

K r 
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1 4) The numerical difficulties of this approach, if any, 
0 1/ lie in the inversion of QQ*.  If the condition • 
• • 

number of QQ  is too large, an anomolous response i 

begins to occur in the reconstructed function 

(especially with noisy measurements), and one must 

resort to such methods as truncated or regularized 

pseudoinversion as indicated in Section 3.5. 

5)   The results above have apparently been previously 

discussed in the literature in the context of the 

Modified Discrete Fourier Transform (MDFT), [3].  Our 

results are, however, obtained with an entirely 

different and more general operator-theoretic 

approach.  In particular, our solution is obtained in 

the time domain, while that of [3] is obtained as a 

constrained optimization in the frequency domain. 

4.2 A Truncated Sine Function 

Let x(t) be a truncated sine function over two 

cycles, i.e., 

x(t) = sin 2*t   ;   0<t£2 

= 0        ;  otherwise. (4.9) 

We choose a Gaussian shaped function to represent the signal 

autocorrelation function, i.e., 

-t2/2 t)   = e  c /z 
P(t)   • •  * '" (4.10) 
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There are two reasons for using (4.10).  First it is simple to 

manipulate analytically.  Second, it closely approximates the 

Hamming weighted and compressed linear frequency modulated 

waveform. 

We will only examine the noise-free case for this 

example.  Results are shown in Figs. 4.1 to 4.3 for a total of 

9, 17, and 25 samples, respectively.  Notice that measurements 

are taken over the time interval where x(t) is not zero.  The 

solid curve gives the true function.  The diamond shaped 

symbols represent the discrete measurements, yi, i=1,...,n. 

The small squares are the estimates.  Notice that the higher 

the number of samples is, the closer the estimates are to the 

true curve.  With only 9 points over a two cycle period, the 

estimates are still very close to the truth.  Since the 

measurements are obtained as the convolution of x(t) and p(t), 

they do carry information about x(t) outside the measurement 

interval.  This is evident via the fact that the estimates 

rapidly go to zero as the true function does. 

4.3  The Closely Space Object Resolution Problem 

We next consider a problem of practical interest in 

radar and/or optical signal processing.  In this example, x(t) 

becomes a series of impulse function with each impulse 
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Fig. 4.1.  Two-cycle sine with 9 samples. 
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representing a point target and the magnitude of the impulse 

giving the signal amplitude. 

The Fourier transform of an impulse function has a 

constant amplitude over all frequencies.  The output y(t) may 

however, be bandlimited as determined by the signal 

autocorrelation function P(t).  We use a Gaussian shaped 

function to represent P(t) as shown in Eq. (4.10)  Although a 

Gaussian shaped function is not bandlimitted, we use a + 3 

standard deviation width of its spectrum to approximate its 

"bandwidth".  Using (4.10), one can quickly obtain the (pseudo) 

Nyquist sampling interval as At " 1. 

In Fig. 4.4, we present the noise-free measurements and 

the estimate of a point target.  Notice that the true function 

is an impulse function represented by a vertical line in Fig. 

4.4.  The estimated waveform resembles a sine function.  A 

circle is drawn at the peak of the recovered pulse.  Recall 

that an impulse can be expressed as the limit of a sine 

function with its bandwidth approaching infinity.  The estimate 

can be made closer to an impulse if more and denser samples are 

taken.  This gradually introduces numerical problems, however, 

since the condition number of QQ* will become large. 

In Fig. 4.5, we present the results for two targets 

separated by 1.5 standard deviations.  For radar (optical) 
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Fig. 4.4.  Point target case (At-1) 
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Fig. 4.5.  Point target case (separation = 3/4 resolution) 
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signals, this corresponds to a 3/4 resolution (detector width) 

separation.  In this noise free case, the estimated function 

clearly indicates the presence of two targets.  Notice that the 

two signal peaks corresponding to the two target location 

estimates are indicated by two circles enclosing these peaks. 

In Fig. 4.6 we add noise samples to the 

measurements.  The noise samples are meant to represent the 

white additive noise at a radar receiver.  At the matched 

filter output the noise samples become correlated, with 

correlation function being the same as p(t). h  signal-to-noise 

ratio (SNR) of 20 is used.  This is an amplitude ratio, i.e., 

when the noise variance is unity, the signal amplitude is 

simply SNR.  Results shown in Fig. 4.6 indicates that large 

sidelobes result from noisy measurements.  This is due to the 

inherent form of the pseudoinversion shown in (2.12), where a 

small singular value (oj) can cause a small variation in y to 

become a large variation in x. 

In order to reduce the noise effect, we apply the 

regularized pseudoinversion filter.  Notice that in this case 

we do not arrive at an exact solution for y = Qx; instead, we 

obtain a solution which also pays attention to the smoothness 

of x via the penalty term using the norm of x.  Because our 

measurements are corrupted with correlation noise, the 

regularized estimate is obtained via (3.15) and (3.18). 
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Fig. 4.6.  Two-target with noisy measurements, no 
regularization. 
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The results are given in Fig. 4.7.  Notice that the regulariza- 

tion factor can substantially reduce the noise effect.  In this 

case, the e is choosen to be a tenth of the inverse signal-to- 

noise ratio.  For SNR=20, e=.005.  With the regularization 

factor included, the pseudoinversion filter also includes the 

normalization using the noise covariance matrix. 

Also shown in Fig. 4.7 is a algorithm for identifying 

scattering centers (targets) imbedded in the measurements. 

This algorithm is a "peak-picker" operating over the interval 

where the measurements are significantly above noise (i.e., for 

estimates higher than the two horizontal lines at the outside 

of the mainlobe).  All peaks identified within that interval 

are further screened based on their amplitudes.  Only those 

peaks within a certain range of the largest peak are retained 

(i.e., the lower horizontal line in the center).  This is done 

to reduce sensitivities to the sidelobes of the estimates.  The 

number of peaks identified gives the estimated number of 

targets.  The peak locations then become the target location 

estimates.  Because the recovered signal is a continuous 

function of time, the target location estimate can be nearly 

made free of sampling granularity errors. 

We use Figs. 4.8-4.11 to further study the effects of 

sampling interval and noisy measurements.  Recall that results 
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Fig. 4.7.  Two-target with noisy measurements, with 
regularization. 
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Fig. 4.8.  Two-target case, noise free with twice the Nyquist 
rate (At » 1/2). 
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Fig. 4.9. Two-target case, noise free with twice the Nyquist 
rate and 1/2 resolution cell separation. 
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Fig. 4.10.  Two-target case, noisy data with twice the Nyquist 
rate and 1/2 resolution all separation. 
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Fig. 4.11.  The same conditions as Fig. 4.10 except with 
regularization in the filter. 
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of Figs. 4.4-4.7 used the "Nyquist" sampling interval (=1). 

This interval is reduced to half for results in Figs. 

4.8-4.11.  We have also enlarged the horizontal scale so that 

the interval between samples remains the same for the figures. 

Noise-free data were used for Figs. 4.8 and 4.9.  Results of 

Fig. 4.8 should be compared with those of Fig. 4.5.  Notice 

that the resolution is substantially improved with the 

increased sampling rate.  In Fig. 4.9, the target separation is 

reduced to a 1/2 resolution cell, yet two targets can still be 

clearly seen.  Noisy samples with a SNR of 20 and .75 resolu- 

tion cell separation are used in Fig. 4.10.  It is evident that 

the pseudoinversion filter now acts as a noise amplifier.  This 

is because when the samples are taken closer, the condition 

number of QQ* also increases, and the result becomes more 

suseptible to measurement perturbations.  In Fig. 4.11, a 

regularization factor of .1/SNR was applied to the same set of 

data used in Fig. 4.10.  The improvement is dramatic. 

We now study the performance of the closely spaced 

objects resolution problem statistically.  The probabilities of 

correct indentification of target numbers in terms of target 

separation with target SNR as parameter are shown in Fig. 

4.12.  These results are obained with 100 Monte Carlo 

repetitions.  A regularization parameter of e = .1/SNR was used 

for all these results.  This parameter was chosen to insure a 
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less than 1% false alarm probability for a point target.  We 

remark that although techniques for realtime selection of e 

based upon the residuals and/or the norm of x are available and 

implemented in many scientific subroutine packages, we believe 

that the above choice is application dependent and a 

pre-selected coefficient can substantially reduce computational 

burden.  Comparing these with results of [6] where a maximum 

likelihood estimator in conjunction with the Akaiki criterion 

was used, it is found that our method gives poorer 

performances.  This is somewhat expected bacause the method of 

[6] is parametric and near optimum (except the use of Akaiki 

information).  Although our estimate is optimum, the 

identification procedure is rather arbitrary and furthermore we 

do not assume a parametric model for the targets.  Our results 

are, however, substantially better than the conventional 

rule-of-thumb resolution criterion, i.e., one resolution cell 

separation.  Furthermore, our method is much easier to 

implement compared with that of [6].  The target location 

estimation accuracy as a function of separation to a nearby 

interfering target for a two-equal-ampltude-target model with 

SNR of 20 is shown in Fig. 4.13. 

Also traced is the analytical model given in [7].  The model of 

[7] is based upon the Cramer-Rao bound analysis for unbiased 
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estimates together with a bias model for the case when targets 

are unresolved.  The total error is the root-sum-square of 

these two errors.  The result of Fig. 4.13 is somewhat 

suprising because our error is slightly smaller than that 

indicated by the Cramer-Rao bound over a certain region.  This 

is because the Cramer-Rao bound is only applicable to unbiased 

estimates while our estimates are slightly biased (away from 

each other) thus resulting in smaller random errors. 

In conclusion, we believe that the method described 

above is very attractive for realtime implementation because of 

its simplicity and good performance.  Although the 

identification probability is poorer than that of a near 

optimum algorithm, its simplicity in implementation should be a 

factor for trade-off considerations.  Furthermore, the 

identification probability is still within the bound of 

performance usually considered for realtime systems [7].  The 

estimation error of our method is comparable and even slightly 

smaller than that predicted by the Cramer-Rao bound due to the 

existance of a slight bias error. 
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V.   CONCLUDING REMARKS 

In this report, we applied the pseudoinversion 

operator to the estimation of linear systems (or input 

functions) with discrete measurements.  Relevant operator 

theory was first reviewed.  Theorems were stated with outlines 

of, or references cited for, their proofs.  The solution to the 

problem of scattering function estimation was explicitly 

given.  Three examples were presented to illustrate our 

results.  In one example, an interpolation formula for finite 

number of samples was given.  This result is the time domain 

counterpart of the Modified Discrete Fourier Transform known in 

the literature.  In another example, the problem of closely 

spaced targets (signals) resolution was studied. 

Since the pseudoinversion involves matrix inversion, 

numerical problems may exist for some problems.  Methods such 

as truncated or filtered singular value decomposition 

and regularization can be applied.  General techniques for 

selecting a truncation or regularization are available, while 

otners may be very specific to particular applications. 
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